Optical Fiber Types

Optical fiber types are characterized by their structure and by their properties of transmission. Basically, optical fibers are classified into two types. The first type is single mode fibers. The second type is multimode fibers. As each name implies, optical fibers are classified by the number of modes that propagate along the fiber.



As previously explained, the structure of the fiber can permit or restrict modes from propagating in a fiber. The basic structural difference is the core size. Single mode fibers are manufactured with the same materials as multimode fibers. Single mode fibers are also manufactured by following the same fabrication process as multimode fibers.

Single Mode Fibers

The core size of single mode fibers is small. The core size (diameter) is typically around 8 to 10 micrometers (- mm). A fiber core of this size allows only the fundamental or lowest order mode to propagate around a 1300 nanometer (nm) wavelength. Single mode fibers propagate only one mode, because the core size approaches the operational wavelength (lambda). The value of the normalized frequency parameter (V) relates core size with mode propagation.

In single mode fibers, V is less than or equal to 2.405. When V is -2.405, single mode fibers propagate the fundamental mode down the fiber core, while high-order modes are lost in the cladding. For low V values (-1.0), most of the power is propagated in the cladding material. Power transmitted by the cladding is easily lost at fiber bends. The value of V should remain near the 2.405 level.

Single mode fibers have a lower signal loss and a higher information capacity (bandwidth) than multimode fibers. Single mode fibers are capable of transferring higher amounts of data due to low fiber dispersion. Basically, dispersion is the spreading of light as light propagates along a fiber. Dispersion mechanisms in single mode fibers are discussed in more detail later in this chapter. Signal loss depends on the operational wavelength (lambda).

In single mode fibers, the wavelength can increase or decrease the losses caused by fiber bending. Single mode fibers operating at wavelengths larger than the cutoff wavelength lose more power at fiber bends. They lose power because light radiates into the cladding, which is lost at fiber bends. In general, single mode fibers are considered to be low-loss fibers, which increase system bandwidth and length.

Multimode Fibers

As their name implies, multimode fibers propagate more than one mode. Multimode fibers can propagate over 100 modes. The number of modes propagated depends on the core size and numerical aperture (NA). As the core size and

NA increase, the number of modes increases. Typical values of fiber core size and NA are 50 to 100 μm and 0.20 to 0.29, respectively.

A large core size and a higher NA have several advantages. Light is launched into a multimode fiber with more ease. The higher NA and the larger core size make it easier to make fiber connections. During fiber splicing, core-to-core alignment becomes less critical. Another advantage is that multimode fibers permit the use of light-emitting diodes (LEDs). Single mode fibers typically must use laser diodes. LEDs are cheaper, less complex, and last longer. LEDs are preferred for most applications.

Multimode fibers also have some disadvantages. As the number of modes increases, the effect of modal dispersion increases. Modal dispersion (intermodal dispersion) means that modes arrive at the fiber end at slightly different times. This time difference causes the light pulse to spread. Modal dispersion affects system bandwidth. Fiber manufacturers adjust the core diameter, NA, and index profile properties of multimode fibers to maximize system bandwidth.

(back) (top) (next) (return to fiber optics page)

Become a loyal member to our site. It's free!

Enter your E-mail Address
Enter your First Name (optional)
Then

Don't worry — your e-mail address is totally secure.
I promise to use it only to send you Learn-about-electronics.

Site Search

Custom Search




Subscribe to me on YouTube



Translate your page

If English is not your first language you can Translate the text on this page to any one of the languages found in the drop down menu. Select your language from the list for an instant translation.


Looking for something unique for your project? Choose from the drop down menu for quick access to the item you seek.




Related Pages

soldering circuit board

TheSolderBlob.com

Basic Electronics image

Become an Electronics Technician

UnitConversion.org

Convert most anything with this utility

Coaxial cable

Find your wire and cable here!


Sponsored Sites

Sponsor Policy

Adobe Dreamweaver CS5

SBI! Proof

Learn more about SBI here!

Diy-Audio-Guide.com

www.Diy-Audio-Guide.com

www.Home-PC-Help.com

www.Home-PC-Help.com


If you like this site please pay it forward. Donations are welcome.