Home
About-Me
AC Current
AC Motors
AC Generators
Amplification
Antenna Principles
Basic Electronics
Batteries
Blog it!
Capacitance
Circuit Control
Circuit Measuring
Circuit-Protection
Cable Connectors
Conductors
DC Current
DC Motors
Diodes
E-Goods
Electron Tubes
Generators
Gyros
Hoplinks
Inductance
Logic
Meters
Microwaves
More-Antennas
Oscillators
Our Visitor's
Power
Power Supplies
Project Videos
RADAR
RADAR-Parts
Radio Waves
Reactance
Resistance
RF-Antennas
RLC-Circuits
Safety
Servos
Soldering
Special Logic
Specialty Tubes
Synchros
The-Oscilloscope
Spectrum Analyzer
Tubes Cont. -
Transformers
Transistors
Transmission Lines
Trans. Lines Cont.-
Tuned Circuits
Voltage
Waveguides
Wave Propagation
Wiring Techniques

Subscribe To This Site
XML RSS
Add to Google
Add to My Yahoo!
Add to My MSN
Subscribe with Bloglines

Drum-Type-Armature

A drum-type armature is shown in the first illustration below. The armature windings are placed in slots cut in a drum-shaped iron core. Each winding completely surrounds the core so that the entire length of the conductor cuts the main magnetic field.

Therefore, the total voltage induced in the armature is greater than in the Gramme-ring. You can see that the drum-type armature is much more efficient than the Gramme-ring. This accounts for the almost universal use of the drum-type armature in modem dc generators

Drum-type-armature

Drum type armature.




Drum-type armatures are wound with either of two types of windings the LAP WINDING or the WAVE WINDING. The lap winding is illustrated in the next picture, view A.

This type of winding is used in dc generators designed for high-current applications. The windings are connected to provide several parallel paths for current in the armature. For this reason, lap-wound armatures used in dc generators require several pairs of poles and brushes

Types of windings used on drum-type armatures.

Types of windings used on drum-type armatures.


View B, shows a wave winding on a drum-type armature. This type of winding is used in dc generators employed in high-voltage applications. Notice that the two ends of each coil are connected to commutator segments separated by the distance between poles.

This configuration allows the series addition of the voltages in all the windings between brushes. This type of winding only requires one pair of brushes. In practice, a practical generator may have several pairs to improve commutation.

(back) (top) (next) (return to generators page)





Follow us on Twitter!





Like what you have seen so far? Help keep this site fresh! Donations are welcome.




Subscribe to this site!


Enter your E-mail Address
Enter your First Name (optional)
Then

Don't worry -- your e-mail address is totally secure.
I promise to use it only to send you Learn-about-electronics.


SiteSearch Google


Custom Search


Translate your page

If English is not your first language you can Translate the text on this page to any one of the languages found in the drop down menu. Select your language from the list for an instant translation.



Find it on Amazon





You are the

joomla analytics
unique visitor to this site.