IF Amplifier Stage

The IF AMPLIFIER STAGE of a radar receiver determines the gain, signal-to-noise ratio, and effective bandwidth of the receiver. The typical IF amplifier stage (commonly called an IF strip) usually contains from three to ten amplifier stages. This cicuit has the capability to vary both the bandpass and the gain of a receiver.

Normally, the bandpass is as narrow as possible without affecting the actual signal energy. When a selection of pulse widths is available, such as short and long pulses, the bandpass must be able to match the bandwidth of the two different signals. Gain must be variable to provide a constant voltage output for input signals of different amplitudes. The figure below is a block diagram of an IF amplifier stage that meets these requirements.


IF amplifier block diagram.


The most critical part of the IF amplifier stage is the input (first stage). The quality of this stage determines the noise figure of the receiver and the performance of the entire receiving system with respect to detection of small objects at long ranges. Gain and bandwidth are not the only considerations in the design of the first IF stage. A consideration perhaps of more importance is noise generation. Noise generation in this stage must be low. Noise generated in the input IF stage will be amplified by succeeding stages and may exceed the echo signal in strength.


Detectors

The detector in a microwave receiver serves to convert the IF pulses into video pulses. After amplification, these are applied to the indicator. The simplest form of detector, and the one most commonly used in microwave receivers, is the DIODE DETECTOR.

A diode detector circuit is shown in view A of the figure below. The secondary of T1 and C1 form a tuned circuit that is resonant at the intermediate frequency. Should an echo pulse of sufficient amplitude be received, the voltage (ei) developed across the tuned circuit is an IF pulse. Its shape is indicated by the dashed line in view B. Positive excursions of e i cause no current to flow through the diode.

However, negative excursions result in a flow of diode current and a subsequent negative voltage (eo) to be developed across R1 and C2. Between peak negative voltage excursions of the ei wave, capacitor C2 discharges through R1. Thus, the eo waveform is a negative video pulse with sloping edges and superimposed IF ripple, as indicated by the solid line in view B.

A negative polarity of the output pulse is ordinarily preferred, but a positive pulse may be obtained by reversing the connections of the diode. In view A, inductance L1, in combination with wiring capacitance and C2, forms a low-pass filter. This filter attenuates the IF components in the eo waveform but results in a minimum loss of video high-frequency components.

Diode-detector.


Video Amplifiers

The video amplifier receives pulses from the detector and amplifies these pulses for application to the indicating device. A video amplifier is fundamentally an RC coupled amplifier that uses high-gain transistors or pentodes. However, a video amplifier must be capable of a relatively wide frequency response.

Stray and interelectrode capacitances reduce the high-frequency response of an amplifier, and the reactance of the coupling capacitor diminishes the low-frequency response. These problems are overcome by the use of FREQUENCY COMPENSATION NETWORKS in the video amplifier. The types of frequency compensation networks that may be used in a video amplifier stage are discussed in detail in NEETS, Module 8, Introduction to Amplifiers.

(back) (top) (next) (return to radar parts page)